ME-6543: Machine Learning and Data Analytics
(Fall 2019)
Lecture Notes
- Lecture 1: Course Introduction (Slide)
- Lecture 2: Review: Linear Algebra , Probability Distribution
- Lecture 3: Simple Linear Regression
- Lecture 4: Multiple Linear Regression
- Lecture 5: Cost Function, Gradient Descent
- Lecture 6: Gradient Descent, Polynomial Regression
- Lecture 7: K Nearest Neighbors Regression, Kernel Regression
- Lecture 8: Gaussian Process (Reading Material)
- Lecture 9 & 10: Logistic Regression, K Nearest Neighbors Classification
- Lecture 11: Support Vector Machine (SVM)
- Lecture 12: Model Selection
- Lecture 13: Regularization
- Lecture 14: Dimensionality Reduction
- Lecture 15: Decision Trees (Tutorial)
- Lecture 16: Bagging, Boosting and Random Forests
- Lecture 17: Clustering (K-means)
- Lecture 18: Neural Networks (Basics)
- Lecture 19: Convolution Neural Networks (Slide)
- Lecture 20: Parameter Learning in Neural Networks (Slide,
Back Propagation Reading Material)
- Lecture 21: Recurrent Neural Networks
- Lecture 22: Reinforcement Learning (Brief Introduction)
- Lecture 23: Markov Decision Process
Note: Lecture slides are available through Blackboard.
Code Samples
- Google Colab Introduction
- Python Basics
- Python Practice 1
- Python Practice 2
- Video Tutorial(YouTube)
- Linear Regression
- Simple Version
- Gradient Descent
- Multiple Linear Regression
- Lecture 4 Examples
- Gaussian Process Regression
- Simple Version
- Detailed Version
- Logistic Regression
- KNN / K-means
- Regression
- Classification
- Support Vector Machine (SVM)
- Decision Tree
- Principal Component Analysis (PCA)
- PCA with Application Example
- Reading Material
- Sample Neural Network Code
- From scratch Code (MLP)
- Tensorflow Implimentation (MLP)
Homeworks
- Homework 1
- Homework 2
- Homework 3
- Homework 4
- Homework 5
Project
- Project Instructions
- Mid-project Report Instructions
- Final Project Report Instructions
- Project Poster Presentation Template
- Project Planning: Things to Look For
- Sample Hands on Project
Other Necessary Materials
- Class Schedule
- Instructions for myUTSA apps
- Python Cheat Sheets
- Python Installation
- Recommended Textbook
Tan, P. N., Steinbach, M., & Kumar, V. Introduction to Data Mining (2nd Edition). Pearson (January 4, 2018)., ISBN-13: 978-0133128901, ISBN-10: 0133128903.
- Reference books
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, pp. 3-7). New York: springer. (Available Online)
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media. (Available Online)
ME-6543: Machine Learning and Data Analytics
© Syed Hasib Akhter Faruqui, 2019